질문 2 도 옳다.
질문 3 전반부에서도 주파수 대역 계산도 맞지만 "각 주파수 대역의 진폭을 비교하면 신호의 주파수 성분을 알 수 있다" 는 것은 잘못된 것이다. 소파 변환은 순수한 주파수 영역 방법이 아니기 때문에 일반적인 응용은 주파수 설명 및 분석에 적합하지 않습니다. 이 단계는 이미 계산 결과의 주파수에 의해 완성되었습니다. 각 수준의 결과에 대한 주파수 값을 얻으려면 각 수준의 결과에 대해 FFT 를 수행한 다음 눈앞의 밴드에 따라 FFT 이후의 주파수 값을 계산하고, centfrq 함수를 사용하여 각 레벨의 분해에 사용되는 웨이브 베이스의 중심 주파수를 계산하고, FFT 결과에서 중심 주파수가 아닌 주파수가 높은 주파수 값을 식별해야 합니다. 모든 분해 계층의 모든 FFT 결과를 식별하는 모든 주파수 값은 신호의 주파수 구성요소이며, 대부분 원래 신호에 없는 가짜 주파수가 있습니다. 이러한 빈도는 웨이블릿 패킷 분해 작업 중에 생성됩니다. 그래서 초보자는 항상 소파 분해로 신호의 주파수를 계산하는 것을 좋아한다. 사실 소파 분석은 전혀 이렇게 쓰이지 않는다. Matlab 의 웨이브 렛 분석은 주파수와 거의 관련이 없습니다. 더 이상 주파수와 겨루지 말 것을 건의합니다. 그것은 순수 주파수 영역의 개념이다.
마지막으로, 0 ~ fn/2 n 주파수 대역이 근사치인 것을 제외한 모든 주파수 대역은 디테일 계수이지만, 지금은' 고주파' 이라는 단어로 형용할 수 없을 수도 있습니다. 이러한 디테일 계수가 자주 나타나지 않을 수 있기 때문에 디테일 계수를 사용하는 것이 더 좋습니다.